The fluvial history of Mars.

نویسنده

  • Michael H Carr
چکیده

River channels and valleys have been observed on several planetary bodies in addition to the Earth. Long sinuous valleys on Venus, our Moon and Jupiter's moon Io are clearly formed by lava, and branching valleys on Saturn's moon Titan may be forming today by rivers of methane. But by far the most dissected body in our Solar System apart from the Earth is Mars. Branching valleys that in plan resemble terrestrial river valleys are common throughout the most ancient landscapes preserved on the planet. Accompanying the valleys are the remains of other indicators of erosion and deposition, such as deltas, alluvial fans and lake beds. There is little reason to doubt that water was the erosive agent and that early in Mars' history, climatic conditions were very different from the present cold conditions and such that, at least episodically, water could flow across the surface. In addition to the branching valley networks, there are large flood features, termed outflow channels. These are similar to, but dwarf, the largest terrestrial flood channels. The consensus is that these channels were also cut by water although there are other possibilities. The outflow channels mostly postdate the valley networks, although most are still very ancient. They appear to have formed at a time when surface conditions were similar to those that prevail today. There is evidence that glacial activity has modified some of the water-worn valleys, particularly in the 30-50° latitude belts, and ice may also be implicated in the formation of geologically recent, seemingly water-worn gullies on steep slopes. Mars also has had a long volcanic history, and long, sinuous lava channels similar to those on the Moon and Venus are common on and around the large volcanoes. These will not, however, be discussed further; the emphasis here is on the effects of running water on the evolution of the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timescales of fluvial activity and intermittency in Milna Crater, Mars

Milna Crater, Mars (23.4S, 12.3W) exhibits signs of fluvial modification early in Mars history, including a large multi-lobed fan deposit cut by several sinuous valleys. We describe the past hydrologic conditions in Milna and the surrounding area, including a potential lake with a volume of 50 km 3. We also introduce new methods (i) to calculate the timescale of sediment deposition by consideri...

متن کامل

Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing

On the highlands of Mars early in the history of the planet precipitation-driven fluvial erosion competed with ongoing impact cratering. This disruption, and the multiple enclosed basins produced by impacts, is partially responsible for a long debate concerning the processes and effectiveness of fluvial erosion. The role of fluvial erosion in sculpting the early Martian landscape is explored he...

متن کامل

Extensive Amazonian-aged fluvial channels on Mars: Evaluating the role of Lyot crater in their formation

Widespread Amazonian-aged fluvial channels have been mapped proximal to Lyot crater, a ~225 km diameter impact basin in the northern lowlands of Mars. Comparable in area to some Noachian/Hesperian fluvial systems, their morphology differs, being dominated by broad, shallow braided channels. Using new developments in the study of cratering, water inventory, and climate history, we assess eight d...

متن کامل

Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars S...

متن کامل

The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system

The early climate of Mars (Noachian Period, the first ~20% of its history) is thought to differ significantly from that of its more recent history (Amazonian Period, the last ~66%) which is characterized by hyperarid, hypothermal conditions that result in mean annual air temperatures (MAAT) well below 0°C, a global cryosphere, minimal melting on the ground surface, and a horizontally stratified...

متن کامل

Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars: Melting of ice deposits on the interior of Lyot Crater

[1] Valley networks, regional drainage patterns suggesting liquid water stability at the surface, are confined to early in the history of Mars (the Noachian/Hesperian boundary and before), prior to a major climate transition to the hyperarid cold conditions of the Amazonian. Several later fluvial valley systems have been documented in specific Hesperian and Early Amazonian environments, and are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 370 1966  شماره 

صفحات  -

تاریخ انتشار 2012